port-nimara-client-portal/server/api/interests/duplicates/find.ts

369 lines
12 KiB
TypeScript

import { requireSalesOrAdmin } from '~/server/utils/auth';
import { getNocoDbConfiguration } from '~/server/utils/nocodb';
import { logAuditEvent } from '~/server/utils/audit-logger';
export default defineEventHandler(async (event) => {
console.log('[INTERESTS] Find duplicates request');
try {
// Require sales or admin access for duplicate detection
await requireSalesOrAdmin(event);
const query = getQuery(event);
const threshold = query.threshold ? parseFloat(query.threshold as string) : 0.8;
const dateRange = query.dateRange ? parseInt(query.dateRange as string) : 365; // Default 1 year
// Get all interests from NocoDB
const config = getNocoDbConfiguration();
const interestTableId = "mbs9hjauug4eseo"; // Interest table ID
let url = `${config.url}/api/v2/tables/${interestTableId}/records`;
// Add date filtering if specified
if (dateRange && dateRange > 0) {
const cutoffDate = new Date();
cutoffDate.setDate(cutoffDate.getDate() - dateRange);
const dateFilter = `(Created At,gte,${cutoffDate.toISOString()})`;
url += `?where=${encodeURIComponent(dateFilter)}`;
}
const response = await $fetch(url, {
headers: {
'xc-token': config.token
},
params: {
limit: 5000 // Get a large batch for duplicate detection
}
}) as any;
const interests = response.list || [];
console.log('[INTERESTS] Analyzing', interests.length, 'interests for duplicates');
// Find potential duplicates
const duplicateGroups = findDuplicateInterests(interests, threshold);
console.log('[INTERESTS] Found', duplicateGroups.length, 'duplicate groups');
// Log the audit event
await logAuditEvent(event, 'FIND_INTEREST_DUPLICATES', 'interest', {
changes: {
totalInterests: interests.length,
duplicateGroups: duplicateGroups.length,
threshold,
dateRange
}
});
return {
success: true,
data: {
duplicateGroups,
totalInterests: interests.length,
duplicateCount: duplicateGroups.reduce((sum, group) => sum + group.interests.length, 0),
threshold,
dateRange
}
};
} catch (error: any) {
console.error('[INTERESTS] Failed to find duplicates:', error);
if (error.statusCode === 403) {
return {
success: false,
error: 'Insufficient permissions. Sales or admin access required.'
};
}
return {
success: false,
error: 'Failed to find duplicates'
};
}
});
/**
* Find duplicate interests based on multiple criteria
*/
function findDuplicateInterests(interests: any[], threshold: number = 0.8) {
console.log('[INTERESTS] Starting duplicate detection with threshold:', threshold);
console.log('[INTERESTS] Total interests to analyze:', interests.length);
const duplicateGroups: Array<{
id: string;
interests: any[];
matchReason: string;
confidence: number;
masterCandidate: any;
}> = [];
const processedIds = new Set<number>();
let comparisons = 0;
for (let i = 0; i < interests.length; i++) {
const interest1 = interests[i];
if (processedIds.has(interest1.Id)) continue;
const matches = [interest1];
for (let j = i + 1; j < interests.length; j++) {
const interest2 = interests[j];
if (processedIds.has(interest2.Id)) continue;
const similarity = calculateSimilarity(interest1, interest2);
comparisons++;
console.log(`[INTERESTS] Comparing ${interest1.Id} vs ${interest2.Id}: score=${similarity.score.toFixed(3)}, threshold=${threshold}`);
if (similarity.score >= threshold) {
console.log(`[INTERESTS] MATCH FOUND! ${interest1.Id} vs ${interest2.Id} (score: ${similarity.score.toFixed(3)})`);
console.log('[INTERESTS] Match details:', similarity.details);
matches.push(interest2);
processedIds.add(interest2.Id);
}
}
if (matches.length > 1) {
console.log(`[INTERESTS] Creating duplicate group with ${matches.length} matches`);
// Mark all as processed
matches.forEach(match => processedIds.add(match.Id));
// Determine the best master candidate (most complete record)
const masterCandidate = selectMasterCandidate(matches);
// Calculate average confidence
const avgConfidence = matches.slice(1).reduce((sum, match) => {
return sum + calculateSimilarity(masterCandidate, match).score;
}, 0) / (matches.length - 1);
duplicateGroups.push({
id: `group_${duplicateGroups.length + 1}`,
interests: matches,
matchReason: generateMatchReason(matches),
confidence: avgConfidence,
masterCandidate
});
}
}
console.log(`[INTERESTS] Completed ${comparisons} comparisons, found ${duplicateGroups.length} duplicate groups`);
return duplicateGroups;
}
/**
* Calculate similarity between two interests
*/
function calculateSimilarity(interest1: any, interest2: any) {
const scores: Array<{ type: string; score: number; weight: number }> = [];
console.log(`[INTERESTS] Calculating similarity between:`, {
id1: interest1.Id,
name1: interest1['Full Name'],
email1: interest1['Email Address'],
phone1: interest1['Phone Number'],
id2: interest2.Id,
name2: interest2['Full Name'],
email2: interest2['Email Address'],
phone2: interest2['Phone Number']
});
// Email similarity (highest weight) - exact match required
if (interest1['Email Address'] && interest2['Email Address']) {
const email1 = normalizeEmail(interest1['Email Address']);
const email2 = normalizeEmail(interest2['Email Address']);
const emailScore = email1 === email2 ? 1.0 : 0.0;
scores.push({ type: 'email', score: emailScore, weight: 0.5 });
console.log(`[INTERESTS] Email comparison: "${email1}" vs "${email2}" = ${emailScore}`);
}
// Phone similarity - exact match on normalized numbers
if (interest1['Phone Number'] && interest2['Phone Number']) {
const phone1 = normalizePhone(interest1['Phone Number']);
const phone2 = normalizePhone(interest2['Phone Number']);
const phoneScore = phone1 === phone2 && phone1.length >= 8 ? 1.0 : 0.0; // Require at least 8 digits
scores.push({ type: 'phone', score: phoneScore, weight: 0.4 });
console.log(`[INTERESTS] Phone comparison: "${phone1}" vs "${phone2}" = ${phoneScore}`);
}
// Name similarity - fuzzy matching
if (interest1['Full Name'] && interest2['Full Name']) {
const nameScore = calculateNameSimilarity(interest1['Full Name'], interest2['Full Name']);
scores.push({ type: 'name', score: nameScore, weight: 0.3 });
console.log(`[INTERESTS] Name comparison: "${interest1['Full Name']}" vs "${interest2['Full Name']}" = ${nameScore.toFixed(3)}`);
}
// Address similarity
if (interest1.Address && interest2.Address) {
const addressScore = calculateStringSimilarity(interest1.Address, interest2.Address);
scores.push({ type: 'address', score: addressScore, weight: 0.2 });
console.log(`[INTERESTS] Address comparison: ${addressScore.toFixed(3)}`);
}
// Special case: if we have exact email OR phone match, give high score regardless of other fields
const hasExactEmailMatch = scores.find(s => s.type === 'email' && s.score === 1.0);
const hasExactPhoneMatch = scores.find(s => s.type === 'phone' && s.score === 1.0);
if (hasExactEmailMatch || hasExactPhoneMatch) {
console.log('[INTERESTS] Exact email or phone match found - high confidence');
return {
score: 0.95, // High confidence for exact email/phone match
details: scores
};
}
// Calculate weighted average for other cases
const totalWeight = scores.reduce((sum, s) => sum + s.weight, 0);
const weightedScore = scores.reduce((sum, s) => sum + (s.score * s.weight), 0) / (totalWeight || 1);
console.log(`[INTERESTS] Weighted score: ${weightedScore.toFixed(3)} (weights: ${totalWeight})`);
return {
score: weightedScore,
details: scores
};
}
/**
* Normalize email for comparison
*/
function normalizeEmail(email: string): string {
return email.toLowerCase().trim();
}
/**
* Normalize phone number for comparison
*/
function normalizePhone(phone: string): string {
return phone.replace(/\D/g, ''); // Remove all non-digits
}
/**
* Calculate name similarity using Levenshtein distance
*/
function calculateNameSimilarity(name1: string, name2: string): number {
const str1 = name1.toLowerCase().trim();
const str2 = name2.toLowerCase().trim();
if (str1 === str2) return 1.0;
const distance = levenshteinDistance(str1, str2);
const maxLength = Math.max(str1.length, str2.length);
return maxLength > 0 ? 1 - (distance / maxLength) : 0;
}
/**
* Calculate string similarity using Levenshtein distance
*/
function calculateStringSimilarity(str1: string, str2: string): number {
const s1 = str1.toLowerCase().trim();
const s2 = str2.toLowerCase().trim();
if (s1 === s2) return 1.0;
const distance = levenshteinDistance(s1, s2);
const maxLength = Math.max(s1.length, s2.length);
return maxLength > 0 ? 1 - (distance / maxLength) : 0;
}
/**
* Calculate Levenshtein distance between two strings
*/
function levenshteinDistance(str1: string, str2: string): number {
const matrix = Array(str2.length + 1).fill(null).map(() => Array(str1.length + 1).fill(null));
for (let i = 0; i <= str1.length; i += 1) {
matrix[0][i] = i;
}
for (let j = 0; j <= str2.length; j += 1) {
matrix[j][0] = j;
}
for (let j = 1; j <= str2.length; j += 1) {
for (let i = 1; i <= str1.length; i += 1) {
const indicator = str1[i - 1] === str2[j - 1] ? 0 : 1;
matrix[j][i] = Math.min(
matrix[j][i - 1] + 1, // deletion
matrix[j - 1][i] + 1, // insertion
matrix[j - 1][i - 1] + indicator // substitution
);
}
}
return matrix[str2.length][str1.length];
}
/**
* Select the best master candidate from a group of duplicates
*/
function selectMasterCandidate(interests: any[]) {
return interests.reduce((best, current) => {
const bestScore = calculateCompletenessScore(best);
const currentScore = calculateCompletenessScore(current);
return currentScore > bestScore ? current : best;
});
}
/**
* Calculate completeness score for an interest record
*/
function calculateCompletenessScore(interest: any): number {
const fields = ['Full Name', 'Email Address', 'Phone Number', 'Address', 'Extra Comments', 'Berth Size Desired'];
const filledFields = fields.filter(field =>
interest[field] && interest[field].toString().trim().length > 0
);
let score = filledFields.length / fields.length;
// Bonus for recent creation
if (interest['Created At']) {
const created = new Date(interest['Created At']);
const now = new Date();
const daysOld = (now.getTime() - created.getTime()) / (1000 * 60 * 60 * 24);
// More recent records get a small bonus
if (daysOld < 30) score += 0.1;
else if (daysOld < 90) score += 0.05;
}
return score;
}
/**
* Generate a descriptive match reason
*/
function generateMatchReason(interests: any[]): string {
const reasons = [];
// Check for exact email matches
const emails = interests.map(i => i['Email Address']).filter(Boolean);
if (emails.length > 1 && new Set(emails.map(e => normalizeEmail(e))).size === 1) {
reasons.push('Same email address');
}
// Check for exact phone matches
const phones = interests.map(i => i['Phone Number']).filter(Boolean);
if (phones.length > 1 && new Set(phones.map(p => normalizePhone(p))).size === 1) {
reasons.push('Same phone number');
}
// Check for similar names
const names = interests.map(i => i['Full Name']).filter(Boolean);
if (names.length > 1) {
const normalizedNames = names.map(n => n.toLowerCase().trim());
if (new Set(normalizedNames).size === 1) {
reasons.push('Same name');
} else {
reasons.push('Similar names');
}
}
return reasons.length > 0 ? reasons.join(', ') : 'Multiple matching criteria';
}